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Abstract

The shape of the normally striking impactor that attains the maximum depth of penetration into a concrete or a

limestone semi-infinite target for a given impact velocity is found. It is shown that the optimum shape is close to a blunt

(in general case) cone and it is independent on the properties of the material of the target in the framework of the

employed penetration model. The performance of some other typical shapes of the nose of the impactors (spherical-

conic impactors, sharp-conic impactors, truncated-ogive impactors) are analyzed and compared with the optimal

impactor.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are a few publications on impactor�s shape optimization. In the first studies on this problems,
indirect criteria of optimization were used, namely, the resistance in motion of the penetrator inside a target

(Bunimovich and Yakunina, 1987a,b; Bunimovich, 1989; Ostapenko and Yakunina, 1992; Yankilevsky,

1983) and the ‘‘dynamical work’’ (Kusher, 1967); the latter approach is discussed by Nixdorff (1987) and
Ben-Dor et al. (2001). More recently, the direct criteria, the maximum depth of penetration in the case of a

semi-infinite target and the minimum ballistic limit velocity for a target with a finite thickness, was used.

The results were obtained for ductile homogeneous targets (Ben-Dor et al., 2000, 2001, 2003; Vedernikov

and Shchepanovsly, 1995; Ostapenko et al., 1994; Ostapenko and Yakunina, 1999; Yakunina, 2000, 2001;

Jones et al., 1998; Jones and Rule, 2000; Bunimovich and Dubinsky, 1995) and layered shields (Ben-Dor

et al., 1997, 1999) and fiber-reinforced plastic (FRP) laminates (Ben-Dor et al., 2002a,b). In this study we

considered the problem of impactor�s nose optimization applied to concrete and limestone targets.
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2. Description of the model and formulation of the problem

Consider a normal penetration of a rigid striker (a body of revolution) into a concrete or limestone semi-

infinite target. The notations are shown in Fig. 1. The coordinate h, the instantaneous depth of penetration,
is defined as the distance between the nose of the impactor and the front surface of the target. The Cartesian

coordinates xOy are associated with the impactor, the generator of the impactor is determined as y ¼ UðxÞ.
As a basis in our study of optimization problem we used the two-step penetration model (Forrestal et al.,

1994, 1996; Frew et al., 1998) that initially was suggested for concrete target.

At the first step of the penetration, the resistance force is
D ¼ ch; 06 h6 4R; ð1Þ
where c is a constant.
At the second step (hP 4R), it is assumed that impactor–target interaction at a given location at the

impactor�s surface that is in contact with the target is determined by the following equation:
d~FF ¼ XðuÞ~nn0 dS; u ¼ �~vv �~nn0 ¼ v~xx0 �~nn0; ð2Þ
where d~FF is the forces acting at the nose and lateral surface elements dS,~nn0 is the inner normal unit vector,~vv
is a local velocity vector, ~xx0 is an unit vector of x-axis (see Fig. 1), function X determines the model of

impactor–target interaction. Assuming that the function X is the same for different impactor�s shapes this
function is determined from the solution of the problem of cavity expansion (Forrestal and Luk, 1992):
XðuÞ ¼ a0 þ b0u2: ð3Þ
In the case of a concrete target, a0 ¼ sf 0
c , b0 ¼ c, where f 0

c and c are the unconfined compressive strength
and the density of the material of the target, respectively, dimensionless empirical constant s can be cal-
culated using the following approximation (Frew et al., 1998) s ¼ 82:6ðf 0

cÞ
�0:544

(f 0
c in MPa). In the case of a

limestone target (Frew et al., 2000), b0 ¼ c, a0 ¼ l0 þ l1ðR=R0Þ where l0 ¼ 607 MPa, l1 ¼ 86 MPa,
R0 ¼ 0:0254 m.
The model of Eqs. (2) and (3) is directly applicable to impactors with the flat thickness (Ben-Dor et al.,

2001; Chen and Li, 2001, 2002), without recourse to artificial expedients taking into account the truncation

effect (see, e.g., Qian et al., 2000). Let us derive the expression for the resistance force in the form that is
convenient for a future analysis.
Fig. 1. Coordinates and notations.
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The total force ~FF is determined by integrating the local force over the flat thickness and the lateral

surfaces, Sflat and Slat, respectively. Using formulae from differential geometry and taking into account that
~xx0 �~nn0 ¼ 1 at the flat thickness, the following expression for the resistance force can be derived:
D ¼~xx0
Z
Snose

d~FFnose

�
þ
Z
Slat

d~FFlat

�
¼ pðb0v2 þ a0Þr2 þ 2p

Z L

0

b0
U2

x

U2
x þ 1

v2
 

þ a0

!
UxUdx

¼ aþ bv2; ð4Þ
where
a ¼ pa0ðr2 þ gÞ ¼ pa0R2; ð5Þ
b ¼ pb0 r2
"

þ 2
Z L

0

UUx

 
� UUx

U2
x þ 1

!
dx

#
¼ pb0ðr2 þ g � 2JÞ ¼ pb0ðR2 � 2JÞ; ð6Þ
g ¼ 2
Z L

0

UUx dx ¼
Z L

0

dU2

dx
dx ¼ R2 � r2; Ux ¼

dU
dx

; ð7Þ
J ¼
Z L

0

UUx

U2
x þ 1

dx ð8Þ
and r ¼ Uð0Þ, R ¼ UðLÞ (see Fig. 1).
Let us derive the expression for the depth of penetration using a method that is less involved as com-

pared to Forrestal and Luk (1992). Taking into account that
d2h
dt2

¼ dv
dt

¼ 1
2

dw
dh

; wðhÞ ¼ v2; ð9Þ
equation of motion of impactor with the mass m reads:
m
2

dw
dh

¼ �D; D ¼ ch if 06 h6 4R;
aþ bw if hP 4R;

�
ð10Þ
where the constant c is determined using condition of continuity of the resistance force at h ¼ 4R:
4Rc ¼ aþ bŵw; ŵw ¼ wð4RÞ: ð11Þ
Considering the motion of the impactor between the initial (h ¼ 0, w ¼ v20, where v0 is the impact velocity of
the impactor) and the final (h ¼ 4R, w ¼ ŵw) locations of the first step of penetration Eq. (10) allows us to
write:
m
2

Z ŵw

v2
0

dw ¼ �c
Z 4R

0

hdh: ð12Þ
Calculating the integrals we obtain:
mðv20 � ŵwÞ ¼ ð4RÞ2c: ð13Þ
In a similar manner, the equation of motion of the impactor between the point h ¼ 4R, w ¼ ŵw and the point
h ¼ H , w ¼ 0 (H is the depth of penetration (DOP), i.e., the depth when the impactor stops, and it is
assumed that H � 4R) of the second step of penetration implies:
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m
2

Z 0

ŵw

dw
aþ bw

¼ �
Z H

4R
dh; ð14Þ
or
H ¼ 4Rþ m
2

Z ŵw

0

dw
aþ bw

¼ 4Rþ m
2b
Ln 1

�
þ b
a
ŵw
�
: ð15Þ
Eliminating c from Eqs. (11) and (13) we arrive at the following formula for ŵw:
ŵw ¼ mv20 � 4aR
mþ 4bR ; v20 > 2

ffiffiffiffiffiffi
aR
m

r
: ð16Þ
Forrestal et al. (1994, 1996), Frew et al. (1998) (see also Li and Chen, 2003) studied the validity of this

model and the range of velocities when it can be applied for the concrete shields. The conclusion is that

‘‘predictions . . . are in good agreement with (experimental) data until nose erosion becomes excessive’’
(Forrestal et al., 1996). Experiments confirmed good performance of the model up to the impact velocities

of 800 m/s, and feasibility to apply it (although with care) at higher velocities up to 1200 m/s. For the

limestone shields the model is quite accurate in the whole studied range of the impact velocities, up to 1650

m/s (Frew et al., 2000; Forrestal and Hanchak, 2002).

We consider the problem of maximizing DOP H for the semi-infinite target with known parameters

determining its mechanical properties, namely, c and f 0
c (for a concrete target). The mass of the impactor m,

the length L and shank radius R of the nose of the projectile are assumed to be given. The problem is to

determine a maximum of the functional H in Eq. (15) taking into account the following condition:
UðLÞ ¼ R: ð17Þ
3. Optimum nose geometry

3.1. A property of the criterion functional

Eq. (15) and associated with this criterion functional H , Eqs. (5), (6), (8) and (16), do not contain the
unknown parameter r explicitly and the shape of the impactor, for a given L and R, is described only
by integral J . Using the expression for H in Eq. (15) and Eqs. (6) and (16) allows us to determine the

derivative
dH
dJ

¼ dH
db

� db
dJ

¼ �2pb0
dH
db

¼ �pb0m

"
�
Z ŵw

0

wdw

ðaþ bwÞ2
� 1

aþ bŵw
� 4Rðmv

2
0 � 4aRÞ

ðmþ 4bRÞ2

#
> 0: ð18Þ
Here we used formula from Korn and Korn (1968) to calculate a derivative of an integral over a parameter

when a function and the upper limit in the integral depend upon this parameter. Thus H is an increasing

function of J and the problem is reduced to the problem of maximization of functional J .
Using dimensionless variables
�xx ¼ x
L
; U ¼ U

L
; _UU ¼ dU

d�xx
; s ¼ R

L
; ð19Þ

H ¼ H
2R

; k1 ¼
mv20
4pa0R3

� 1; k2 ¼
m

4pb0RL2
; ð20Þ
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Eq. (15) can be rewritten as follows:
H ¼ Wðk1; k2MÞ ¼ 2þ k2MLn 1

�
þ k1
k2M þ 1

�
; ð21Þ
where
M ¼ 1

s2 � 2J
; ð22Þ

J ¼
Z 1

0

U _UU
_UU
2 þ 1

d�xx: ð23Þ
In dimensionless variables, the problem is to minimize the functional J with the condition:
Uð1Þ ¼ s: ð24Þ
3.2. ‘‘Absolute optimum’’ nose geometry

Since the problem of maximization of the functional J is equivalent to the problem of minimization of
the functional I ¼ s2 � 2J , we can use the results of Eggers and Resnikoff (1957) (see also Miele, 1965)
where the latter variational problem was solved, and to write the solution of our problem as follows:
�xxðtÞ ¼ �rroptAðtÞ; UðtÞ ¼ �rroptBðtÞ; �rropt ¼
ropt
L

¼ 1

Aðt0Þ
; t06 t6 1; ð25Þ
where ropt is the radius of the flat bluntness of the optimal impactor,
AðtÞ ¼ 1
4

1

t2

�
þ 3

4t4
þ ln t � 7

4

�
; BðtÞ ¼ ðt2 þ 1Þ2

4t3
; ð26Þ
the parameter t0 satisfies the equation
Bðt0Þ � sAðt0Þ ¼ 0; ð27Þ

whose solution is showed in Fig. 2. The shape of the generator of the optimal impactor is shown in Fig. 3

for different s. The optimum impactor has a flat bluntness with a shank radius ratio ropt=R that increases
when s is increased.
The maximum value of the functional J is
Jopt ¼
s2Cðt0Þ
8B2ðt0Þ

; CðtÞ ¼ 1

2t2
þ 5

4t4
þ 1

2t6
þ ln t � 9

4
: ð28Þ
The dependence of the maximum value of J as a function of s is shown in Fig. 11.
Let us determine the optimal geometry of impactors for some simple classes of shapes and analyze their

efficiency as compared to the absolute optimum impactor.

3.3. Optimum truncated-conic nose

The equation of the generator of truncated-conic impactor�s nose reads:
Uð�xxÞ ¼ �rr þ tan a�xx; �rr ¼ s � tan a; �rr ¼ r=L; ð29Þ

where a is an angle between the generator and �xx-axis. Substituting the latter equations into Eq. (23) we find
that



Fig. 3. Shape of the generator of the optimal impactor.

Fig. 2. Solution of Eq. (27) in graphical form.
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J ¼ sin aðs cos a � 0:5 sin aÞ; 06 tan a6 s: ð30Þ
The minimum of the function J ¼ JðaÞ is attained when (Ben-Dor et al., 2001)
a ¼ a	 ¼
1

2
tan�1ð2sÞ ð31Þ
and the optimal radius of the bluntness ropt cone and the optimal value of the functional J , Jopt cone read:
ropt cone
R

¼ 1� 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 þ 1

p
þ 1

; Jopt cone ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 þ 1

p�
� 1


: ð32Þ
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For a sharp cone tan a ¼ s and Eq. (30) yields the following formula for the value of the functional J :
J ¼ J sh cone ¼
s2

2ðs2 þ 1Þ : ð33Þ
The plots of J versus ~rr ¼ r=R for different s are shown in Fig. 4. The variation of the function is quite small in
the neighborhood of the maximum, most notably for relatively small s. This means that the radius of the flat
bluntness can be changed in the vicinity of the optimal value (see Fig. 5) without considerable loss in value of

the integral J . The plots of J versus s for optimal truncated cone and sharp cone are shown in Fig. 11.

3.4. Optimum truncated-ogive nose

The equation of the generator of truncated-ogive impactor�s nose read:
Uð�xxÞ ¼ s � �qq	 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qq2	 � ð�xx� 1Þ2

q
; �qq	 ¼ q	=L; 06�xx6 1; ð34Þ
where q	 is the ogive radius,
�qq	 ¼
ðs � �rrÞ2 þ 1
2ðs � �rrÞ ð35Þ
and the conditions that follows from geometrical considerations must be satisfied:
s2 � 16�rr26 s2; or 1� s�26 ~rr26 1; ~rr ¼ r=R: ð36Þ
Substituting Eq. (34) into Eq. (23) we find that
J ¼ 1
2
þ s � �qq	

3�qq2	
½�qq3	 � ð�qq2	 � 1Þ

3=2� � 1

4�qq2	
: ð37Þ
In the case of the ogive-nose impactor without flat bluntness, r ¼ 0 and Eqs. (35) and (37) can be rewritten
as
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Fig. 4. Functional J versus relative radius of the bluntness of truncated-conic impactor.



Fig. 5. Relative radius of the bluntness of the optimum truncated-conic impactor versus given relative thickness.
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�qq	 ¼
s2 þ 1
2s

; J ¼ s2ðs4 þ 2s2 þ 3Þ
6ðs2 þ 1Þ2

; s6 1: ð38Þ
Using the caliber-radius-head parameter
w ¼ q	
2R

¼ �qq	
2s

¼ s2 þ 1
4s2

; ð39Þ
the second in Eq. (38) can be rewritten as
J ¼ 24w
2 � 8w þ 1

48w2ð4w � 1Þ
; w P

1

2
: ð40Þ
The plots of J versus ~rr for different s are shown in Fig. 6. If s6 1 then ~rr changes from 0 to 1; there is a

maximum Jð~rrÞ but the values of the function are very close to this maximum value when ~rr changes in the
range from 0 to 0.5. If s > 1 then ~rr changes from ~rr0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s�2

p
to 1. If 1 < s <
 1:15 then the maximum

Jð~rrÞ is attained for ~rr > ~rr0, if s >
 1:15 then ~rr ¼ ~rr0 is the point of the maximum Jð~rrÞ. The plots of J versus ~rr
becomes progressively less flattened curves with increasing s. The plots of the optimal ~rr and the maximum J
versus s are shown in Figs. 7 and 11, respectively.

3.5. Optimum spherical-conic nose

The equation of the generator of spherical-conic impactor�s nose (see Fig. 8) reads:
Uð�xxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�qq � �xxÞ�xx

p
if 06�xx6�xx0;

q cos a þ tgað�xx� �xx0Þ if �xx06�xx6 1;

(
ð41Þ
where q is the radius of spherical bluntness, a is the angle between the generator of the cone and �xx-axis,
�xx0 ¼
x0
L
¼ s cos a � sin a; �qq ¼ q

L
¼ �xx0
1� sin a

ð42Þ



Fig. 7. Relative radius of the bluntness of the optimum truncated-ogive impactor versus given relative thickness.

Fig. 6. Functional J versus relative radius of the bluntness of truncated-ogive impactor.
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and the following conditions that follow from geometrical considerations must be satisfied:
06 �qq6 minð1; sÞ; or 06 ~qq6 minðs�1; 1Þ ~qq ¼ q=R: ð43Þ
Substituting Eq. (41) into Eq. (23) we find that
J ¼ 0:25�qq2 cos4 a þ 0:5 sin að1� �xx0Þ½2�qq cos2 a þ ð1� �xx0Þ sin a�: ð44Þ
The plots of J versus ~qq for different s are shown in Fig. 9. If s6 1 then ~qq changes from 0 to 1; there is a
maximum Jð~qqÞ but variation of the function is quite small in the neighborhood of the maximum. If s > 1
then ~qq varies from 0 to ~qq0 ¼ s�1. If 1 < s <
 1:2 then the maximum Jð~qqÞ is attained for ~qq < ~qq0, if s >
 1:2



Fig. 9. Functional J versus relative radius of the spherical bluntness of spherical-conic impactor.

Fig. 8. The shape of spherical-conic impactor.
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then ~qq ¼ ~qq0 is the point of the maximum Jð~qqÞ. The plots of the optimal ~qq and maximum J versus s are
shown in Figs. 10 and 11, respectively.
3.6. Comparison of different nose shapes

The plots of the maximum J versus s are shown in Fig. 11 for the absolute optimal nose and the optimal
noses among the considered nose shapes. It is seen from Eq. (23) that minimum J is 0, and this value is
attained for the cylinder, Uð�xxÞ ¼ s.
First and foremost, it is shown in Fig. 11 that the functional J for optimal truncated-conic nose assumes

the values that are very close to the optimum for all s. For 0 < s <
 0:5, the difference in the values J for all
shapes is very small. For 
 0:5 < s <
 1:0, value of J for the optimum spherical-conic nose is close to the
optimum. For relatively large s, the advantage of the absolute optimal nose and the optimal truncated-
conic nose over other shapes becomes quite essential.



Fig. 10. Relative radius of the bluntness of the optimum spherical-conic impactor versus given relative thickness.

Fig. 11. Comparison of performance of impactors with different shapes of the nose.
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Generally, the difference in the magnitude of the functional J cannot be considered as a measure of the
difference in the criterion of optimization. In order to compare the efficiencies of the �absolute optimal�
impactor and the optimal truncated-conic impactor the following index
e0 ¼
Hopt � Hopt cone

Hopt
� 100%; ð45Þ
is used, where Hopt and Hopt cone are DOP of the �absolute optimum� impactor and optimum truncated-conic
impactor, respectively. Figs. 12a–d show that these impactors are practically equivalent. This property

allows us to propose the approximate analytical formula for the ‘‘absolute maximum’’ DOP, namely,
Hmax ¼ Wðk1; k2M	Þ; ð46Þ



Fig. 12. (a–d) Comparison of performance of the optimum truncated-conic impactor and the ‘‘absolute optimum’’ impactor.

Fig. 13. (a, b) Comparison of performance of the sharp conic impactor and the ‘‘absolute optimum’’ impactor.
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where W is determined by Eq. (21) and M is calculated using the second in Eqs. (32) for the optimum

truncated-conic impactor:
M	 ¼
1

s2 � 2Jopt cone
¼ 2s

2 þ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s2 þ 1

p

2s4
: ð47Þ
The ‘‘absolute optimum’’ impactor and the sharp conic impactor are compared in Fig. 13a and b using the
index:
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e1 ¼
Hopt � Hsh cone

Hopt
� 100%: ð48Þ
The pronounced advantage of the optimal shape over the sharp cone is clearly demonstrated in these

figures.
4. Concluding remarks

We determined the shape of the normally striking impactor penetrating to the maximum depth into a

concrete or a limestone semi-infinite target. The optimal shape is independent on the properties of the

material of the target in the framework of the employed model of penetration. The optimum impactor has a

flat bluntness, its shape and DOP are very close to the shape and DOP of the optimal truncated-conic

impactor. The typical shapes of the impactors in order of decreasing DOP, are optimal truncated-conic

impactor, optimal spherical-conic impactor, sharp-conic impactor, and optimal truncated-ogive impactor.

The difference in efficiency between the optimal impactor or the optimal truncated-conic impactor and each
of the remaining impactors in the list increases with increase of the thickness of the impactor.

Although in this study we employed a penetration model that was validated experimentally further

experimental studies should be performed with the end to analyze theoretical predictions. In these exper-

iments parameters k1, k2, s must be kept constant when changing the shape of the impactor since they were
assumed constant in the theoretical study of the optimization problem. We consider the results of our

theoretical analysis as a basis and a stimulus for further experimental investigations.
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