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Abstract

The shape of the normally striking impactor that attains the maximum depth of penetration into a concrete or a
limestone semi-infinite target for a given impact velocity is found. It is shown that the optimum shape is close to a blunt
(in general case) cone and it is independent on the properties of the material of the target in the framework of the
employed penetration model. The performance of some other typical shapes of the nose of the impactors (spherical-
conic impactors, sharp-conic impactors, truncated-ogive impactors) are analyzed and compared with the optimal
impactor.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

There are a few publications on impactor’s shape optimization. In the first studies on this problems,
indirect criteria of optimization were used, namely, the resistance in motion of the penetrator inside a target
(Bunimovich and Yakunina, 1987a,b; Bunimovich, 1989; Ostapenko and Yakunina, 1992; Yankilevsky,
1983) and the “dynamical work™ (Kusher, 1967); the latter approach is discussed by Nixdorff (1987) and
Ben-Dor et al. (2001). More recently, the direct criteria, the maximum depth of penetration in the case of a
semi-infinite target and the minimum ballistic limit velocity for a target with a finite thickness, was used.
The results were obtained for ductile homogeneous targets (Ben-Dor et al., 2000, 2001, 2003; Vedernikov
and Shchepanovsly, 1995; Ostapenko et al., 1994; Ostapenko and Yakunina, 1999; Yakunina, 2000, 2001;
Jones et al., 1998; Jones and Rule, 2000; Bunimovich and Dubinsky, 1995) and layered shields (Ben-Dor
et al., 1997, 1999) and fiber-reinforced plastic (FRP) laminates (Ben-Dor et al., 2002a,b). In this study we
considered the problem of impactor’s nose optimization applied to concrete and limestone targets.
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2. Description of the model and formulation of the problem

Consider a normal penetration of a rigid striker (a body of revolution) into a concrete or limestone semi-
infinite target. The notations are shown in Fig. 1. The coordinate 4, the instantaneous depth of penetration,
is defined as the distance between the nose of the impactor and the front surface of the target. The Cartesian
coordinates xOy are associated with the impactor, the generator of the impactor is determined as y = ®(x).
As a basis in our study of optimization problem we used the two-step penetration model (Forrestal et al.,
1994, 1996; Frew et al., 1998) that initially was suggested for concrete target.

At the first step of the penetration, the resistance force is

D=ch, 0<h<A4R, (1)

where ¢ is a constant.
At the second step (& = 4R), it is assumed that impactor—target interaction at a given location at the
impactor’s surface that is in contact with the target is determined by the following equation:

dF = Qu)i’dS, u= -5 - = @, (2)

where dF is the forces acting at the nose and lateral surface elements dS, 7° is the inner normal unit vector, ¥
is a local velocity vector, ¥° is an unit vector of x-axis (see Fig. 1), function Q determines the model of
impactor—target interaction. Assuming that the function Q is the same for different impactor’s shapes this
function is determined from the solution of the problem of cavity expansion (Forrestal and Luk, 1992):

Q(u) = ay + bou*. (3)

In the case of a concrete target, ay = sf7, by =y, where f and y are the unconfined compressive strength
and the density of the material of the target, respectively, dimensionless empirical constant s can be cal-
culated using the following approximation (Frew et al., 1998) s = 82.6(f! )70'544 (f! in MPa). In the case of a
limestone target (Frew et al., 2000), by =7, ao = py + p,(R/Ry) where p, =607 MPa, u, =86 MPa,
Ry =0.0254 m.

The model of Egs. (2) and (3) is directly applicable to impactors with the flat thickness (Ben-Dor et al.,
2001; Chen and Li, 2001, 2002), without recourse to artificial expedients taking into account the truncation
effect (see, e.g., Qian et al., 2000). Let us derive the expression for the resistance force in the form that is
convenient for a future analysis.

Fig. 1. Coordinates and notations.
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The total force F is determined by integrating the local force over the flat thickness and the lateral
surfaces, Sp,, and Sy, respectively. Using formulae from differential geometry and taking into account that

¥ -7 =1 at the flat thickness, the following expression for the resistance force can be derived:

2

L
o o P
D= )"c'o( dF o + / dFlat) = n(bovz + ao)r2 + 2n/ (bo AL ao> &, ddx
Snose Sl;\[ 0

o2+ 1
= a+ bv?, 4)
where
a= nao(r2+n) = 7a,R?, (5)
L OP
b= nb, r2+2/ <¢¢x—2—”>dx] = nhy(r? + 1 — 2J) = mho(R* — 2J), (6)
0 o, +1
L L de? s do
1’]—2/(; @‘I)de—/O de—R —-r, @v_aa (7)
L pp
J = T dx 8
/o o+ 1 ®

and r = ¢(0), R = ®(L) (see Fig. 1).
Let us derive the expression for the depth of penetration using a method that is less involved as com-
pared to Forrestal and Luk (1992). Taking into account that

&*h dv 1dw 5

@@ e MW= ®)
equation of motion of impactor with the mass m reads:

m dw ch if 0<Ah<4R,

san - P D_{a+bw if h> 4R, (10)

where the constant ¢ is determined using condition of continuity of the resistance force at 7 = 4R:
4Rc = a + bw, w = w(4R). (11)

Considering the motion of the impactor between the initial (A = 0, w = v}, where v, is the impact velocity of
the impactor) and the final (4 = 4R, w = W) locations of the first step of penetration Eq. (10) allows us to
write:

w 4R
ﬂ/ dw:—c/ hdh. (12)
2 vﬁ 0

Calculating the integrals we obtain:
m(v} — W) = (4R)’c. (13)

In a similar manner, the equation of motion of the impactor between the point # = 4R, w = w and the point
h=H, w=0 (H is the depth of penetration (DOP), i.e., the depth when the impactor stops, and it is
assumed that H > 4R) of the second step of penetration implies:
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m [ dw A
- = _ dh 14
Z/W a+ bw AR ’ (14)
or
m (Y dw m b
H =4R + — =4R+—Ln(1+-w]. 1
+2/0 arbw T n( +aw> (15)

Eliminating ¢ from Egs. (11) and (13) we arrive at the following formula for w:

2
. muy—4aR ) aR
=— 24/—. 1
W m+ 4bR "’ % > m (16)

Forrestal et al. (1994, 1996), Frew et al. (1998) (see also Li and Chen, 2003) studied the validity of this
model and the range of velocities when it can be applied for the concrete shields. The conclusion is that
“predictions ... are in good agreement with (experimental) data until nose erosion becomes excessive’
(Forrestal et al., 1996). Experiments confirmed good performance of the model up to the impact velocities
of 800 m/s, and feasibility to apply it (although with care) at higher velocities up to 1200 m/s. For the
limestone shields the model is quite accurate in the whole studied range of the impact velocities, up to 1650
m/s (Frew et al., 2000; Forrestal and Hanchak, 2002).

We consider the problem of maximizing DOP H for the semi-infinite target with known parameters
determining its mechanical properties, namely, y and f! (for a concrete target). The mass of the impactor m,
the length L and shank radius R of the nose of the projectile are assumed to be given. The problem is to
determine a maximum of the functional A in Eq. (15) taking into account the following condition:

®(L) = R. (17)

3. Optimum nose geometry
3.1. A property of the criterion functional

Eq. (15) and associated with this criterion functional H, Egs. (5), (6), (8) and (16), do not contain the
unknown parameter » explicitly and the shape of the impactor, for a given L and R, is described only
by integral J. Using the expression for H in Eq. (15) and Egs. (6) and (16) allows us to determine the
derivative

> 0. (18)

dd _dH db _ - _/w wdw 1 4R(mo? — 4aR)
dJ — dp dJ dp o b

—2nhby— — -
’ a+bw) a+bv  (m+4bR)

Here we used formula from Korn and Korn (1968) to calculate a derivative of an integral over a parameter
when a function and the upper limit in the integral depend upon this parameter. Thus H is an increasing
function of J and the problem is reduced to the problem of maximization of functional J.

Using dimensionless variables
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Eq. (15) can be rewritten as follows:

— — — ky
H=Yk,lbM)=24+kMLn|l +—— ), 21
where
— 1
M= =1 22
EaTy (22)
_ [ o0
J = / = dx. (23)
0o P +1
In dimensionless variables, the problem is to minimize the functional J with the condition:
P(1) =r1. (24)

3.2. “Absolute optimum’ nose geometry

Since the problem of maximization of the functional J is equivalent to the problem of minimization of
the functional 7 = 12 — 2J, we can use the results of Eggers and Resnikoff (1957) (see also Miele, 1965)
where the latter variational problem was solved, and to write the solution of our problem as follows:

_ _ — _ _ Yo 1
X(t) = FopA(t),  D(t) = FopiB(1), Fop = Tpt =) fh<t<l1, (25)
where 7, is the radius of the flat bluntness of the optimal impactor,
1/1 3 7 (2 + 1)
A) == s+-—=+Int—- B(t) = ~—+~ 26
=3 (F+aermi-g). 0= (26)

the parameter #, satisfies the equation
B(fo) — TA(lo) = 0, (27)

whose solution is showed in Fig. 2. The shape of the generator of the optimal impactor is shown in Fig. 3
for different 7. The optimum impactor has a flat bluntness with a shank radius ratio r,, /R that increases
when 7 is increased.

The maximum value of the functional J is

- 2C(¢ 1 5
T (to) C +

1 9
= SE (1) =55+ g4+ 35 + It — 5. (28)

Y 4

The dependence of the maximum value of J as a function of t is shown in Fig. 11.
Let us determine the optimal geometry of impactors for some simple classes of shapes and analyze their
efficiency as compared to the absolute optimum impactor.

3.3. Optimum truncated-conic nose

The equation of the generator of truncated-conic impactor’s nose reads:
@(x) =F+tanoax, 7=1—tana, F=r/L, (29)

where o is an angle between the generator and x¥-axis. Substituting the latter equations into Eq. (23) we find
that
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Fig. 2. Solution of Eq. (27) in graphical form.
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Fig. 3. Shape of the generator of the optimal impactor.
J =sino(tcosa — 0.5sina), 0< tana <. (30)

The minimum of the function J = J(a) is attained when (Ben-Dor et al., 2001)

1
o= =3 tan'(27) (31)

and the optimal radius of the bluntness ropcone and the optimal value of the functional J, Jopicone read:

roptcone 2 — 1
=1- ) Jo cone — & 4T2+1_1 . 32
R VAZ 1141 ot 4(v ) (32)
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For a sharp cone tan o = t and Eq. (30) yields the following formula for the value of the functional J:

- 2

J =Jshcone = 5755 -
" 2(2 4 1)

The plots of J versus 7 = r/R for different 7 are shown in Fig. 4. The variation of the function is quite small in
the neighborhood of the maximum, most notably for relatively small 7. This means that the radius of the flat
bluntness can be changed in the vicinity of the optimal value (see Fig. 5) without considerable loss in value of
the integral J. The plots of J versus t for optimal truncated cone and sharp cone are shown in Fig. 11.

(33)

3.4. Optimum truncated-ogive nose

The equation of the generator of truncated-ogive impactor’s nose read:

Px)=1—p,+\/pP—Ex—17 p.=p. /L, 0<x<I, (34)

where p, is the ogive radius,

and the conditions that follows from geometrical considerations must be satisfied:
?—1<P <, orl—1?2<#<1, 7=r/R. (36)

Substituting Eq. (34) into Eq. (23) we find that

- 1 t=p 5 32 1
=_ — (P -1 - —=.

In the case of the ogive-nose impactor without flat bluntness, » = 0 and Egs. (35) and (37) can be rewritten
as

0.9

0.84 T=2.00

07 175

0.6 1.50

057 1.25

™ g4
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Fig. 4. Functional J versus relative radius of the bluntness of truncated-conic impactor.
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Fig. 5. Relative radius of the bluntness of the optimum truncated-conic impactor versus given relative thickness.

2 204 2
PR U S Gk ikt ) Y (38)
2t 6(2+1)
Using the caliber-radius-head parameter
= 2
PP _TH]
V= 2R 2t 4727 (39)
the second in Eq. (38) can be rewritten as
24y -8y + 1 1
T = %’ V== (40)
48y~ (4y — 1) 2

The plots of J versus 7 for different t are shown in Fig. 6. If 1< 1 then 7 changes from 0 to 1; there is a
maximum J(7) but the values of the function are very close to this maximum value when 7 changes in the
range from 0 to 0.5. If > 1 then 7 changes from 7y = V1 —t=2 to 1. If | < t <& 1.15 then the maximum
J(7) is attained for 7 > 7y, if T >~ 1.15 then 7 = 7 is the point of the maximum J (7). The plots of J versus 7
becomes progressively less flattened curves with increasing . The plots of the optimal 7 and the maximum J
versus 7 are shown in Figs. 7 and 11, respectively.

3.5. Optimum spherical-conic nose

The equation of the generator of spherical-conic impactor’s nose (see Fig. 8) reads:

@()_C)_{ (2p —x)x if 0<x<X (41)

0
pcoso +tga(x —x) if Xp<x< 1,

where p is the radius of spherical bluntness, o is the angle between the generator of the cone and x-axis,

_ X0 . _ P Xo
Xo = — = 1Cosa — sina, p===
L L 1

—sina (42)
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Fig. 6. Functional J versus relative radius of the bluntness of truncated-ogive impactor.
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Fig. 7. Relative radius of the bluntness of the optimum truncated-ogive impactor versus given relative thickness.

and the following conditions that follow from geometrical considerations must be satisfied:
0<p< min(l,7), or0<p< min(z',1) p=p/R.
Substituting Eq. (41) into Eq. (23) we find that

J =0.25p* cos* a4 0.5sin (1 — %) [2p cos® o + (1 — Xo) sin o

4495

(43)

(44)

The plots of J versus p for different 7 are shown in Fig. 9. If 7 < 1 then p changes from 0 to 1; there is a
maximum J(p) but variation of the function is quite small in the neighborhood of the maximum. If 7 > 1
then p varies from 0 to p, = v 1. If 1 < 7 <~ 1.2 then the maximum J(p) is attained for p < p,, if t >~ 1.2
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Fig. 8. The shape of spherical-conic impactor.
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Fig. 9. Functional J versus relative radius of the spherical bluntness of spherical-conic impactor.

then p = p, is the point of the maximum J(p). The plots of the optimal p and maximum J versus t are
shown in Figs. 10 and 11, respectively.

3.6. Comparison of different nose shapes

The plots of the maximum J versus 7 are shown in Fig. 11 for the absolute optimal nose and the optimal
noses among the considered nose shapes. It is seen from Eq. (23) that minimum J is 0, and this value is
attained for the cylinder, ®(x) = t.

First and foremost, it is shown in Fig. 11 that the functional J for optimal truncated-conic nose assumes
the values that are very close to the optimum for all 7. For 0 < t <~ 0.5, the difference in the values J for all
shapes is very small. For ~ 0.5 < 7 <~ 1.0, value of J for the optimum spherical-conic nose is close to the
optimum. For relatively large 7, the advantage of the absolute optimal nose and the optimal truncated-
conic nose over other shapes becomes quite essential.
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Fig. 10. Relative radius of the bluntness of the optimum spherical-conic impactor versus given relative thickness.
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Fig. 11. Comparison of performance of impactors with different shapes of the nose.

Generally, the difference in the magnitude of the functional J cannot be considered as a measure of the
difference in the criterion of optimization. In order to compare the efficiencies of the ‘absolute optimal’
impactor and the optimal truncated-conic impactor the following index

Hy, — H,
gy = — 2P 5 100%, (45)
Hopl
is used, where Hop and Hypicone are DOP of the ‘absolute optimum’ impactor and optimum truncated-conic
impactor, respectively. Figs. 12a—d show that these impactors are practically equivalent. This property
allows us to propose the approximate analytical formula for the “absolute maximum” DOP, namely,

ﬁmax - 'P(kl 5 k2M*)7 (46)
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Fig. 13. (a, b) Comparison of performance of the sharp conic impactor and the “absolute optimum’ impactor.

where ¥ is determined by Eq. (21) and M is calculated using the second in Egs. (32) for the optimum
truncated-conic impactor:
i 1 20414 VAP T
e-2J opt cone 274 .
The “absolute optimum” impactor and the sharp conic impactor are compared in Fig. 13a and b using the
index:

(47)
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gy = Tont = Hineone 100/, (48)

opt

The pronounced advantage of the optimal shape over the sharp cone is clearly demonstrated in these
figures.

4. Concluding remarks

We determined the shape of the normally striking impactor penetrating to the maximum depth into a
concrete or a limestone semi-infinite target. The optimal shape is independent on the properties of the
material of the target in the framework of the employed model of penetration. The optimum impactor has a
flat bluntness, its shape and DOP are very close to the shape and DOP of the optimal truncated-conic
impactor. The typical shapes of the impactors in order of decreasing DOP, are optimal truncated-conic
impactor, optimal spherical-conic impactor, sharp-conic impactor, and optimal truncated-ogive impactor.
The difference in efficiency between the optimal impactor or the optimal truncated-conic impactor and each
of the remaining impactors in the list increases with increase of the thickness of the impactor.

Although in this study we employed a penetration model that was validated experimentally further
experimental studies should be performed with the end to analyze theoretical predictions. In these exper-
iments parameters kj, k>, T must be kept constant when changing the shape of the impactor since they were
assumed constant in the theoretical study of the optimization problem. We consider the results of our
theoretical analysis as a basis and a stimulus for further experimental investigations.

References

Ben-Dor, G., Dubinsky, A., Elperin, T., 1997. Optimal 3D impactors penetrating into layered target. Theoretical and Applied Fracture
Mechanics 27, 161-166.

Ben-Dor, G., Dubinsky, A., Elperin, T., 1999. Some ballistic properties of non-homogeneous shields. Composites A 30, 733-736.

Ben-Dor, G., Dubinsky, A., Elperin, T., 2000. Optimization of the shape of a penetrator taking into account plug formation.
International Journal of Fracture 106, L29-1.34.

Ben-Dor, G., Dubinsky, A., Elperin, T., 2001. Shape optimization of penetrator nose. Theoretical and Applied Fracture Mechanics 35,
261-270.

Ben-Dor, G., Dubinsky, A., Elperin, T., 2002a. Optimal nose geometry of the impactor against FRP laminates. Composite Structures
55, 73-80.

Ben-Dor, G., Dubinsky, A., Elperin, T., 2002b. Optimization of the nose shape of an impactor against a semi-infinite FRP laminate.
Composite Science and Technology 62, 663-667.

Ben-Dor, G., Dubinsky, A., Elperin, T., 2003. Numerical solution for shape optimization of an impactor penetrating into a semi-
infinite target. Computers and Structures 81 (1), 9-14.

Bunimovich, A.L., Dubinsky, A., 1995. Mathematical Models and Methods of Localized Interaction Theory. World Scientific
Publishing Company, Singapore.

Bunimovich, A.I., Yakunina, G.E., 1987a. The shapes of three-dimensional minimum-resistance bodies moving in compressible plastic
and elastic media. Moscow University Mechanics Bulletin 42, 59-62.

Bunimovich, A.IL., Yakunina, G.E., 1987b. On the shape of minimum-resistance solids of revolution moving in plastically compressible
and elastic-plastic media. Journal of Applied Mathematics and Mechanics 51, 386-392.

Bunimovich, A.l, Yakunina, G.E., 1989. On the shape of a minimum resistance solid of rotation penetrating into plastically
compressible media without detachment. Journal of Applied Mathematics and Mechanics 53, 380-683.

Chen, X.W., Li, Q.M., 2001. Deep penetration of truncated-ogive-nose projectile into concrete targets. In: Proceeding of the 4th
International Symposium on Impact Engineering, Kumamoto, Japan.

Chen, X.W., Li, Q.M., 2002. Deep penetration of a non-deformable projectile with different geometrical characteristics. International
Journal of Impact Engineering 27, 619-637.

Eggers Jr., A.J., Resnikoff, M.M., Dennis, D.H., 1957. Bodies of revolutions having minimum-drag at high supersonic airspeeds.
NACA, Rep. 1306.



4500 G. Ben-Dor et al. | International Journal of Solids and Structures 40 (2003) 44874500

Forrestal, M.J., Luk, V.K., 1992. Penetration into soil targets. International Journal of Impact Engineering 12 (3), 427-444.

Forrestal, M.J., Hanchak, S.J., 2002. Penetration limit velocity for ogive-nose projectiles and limestone targets. Transactions of
ASME, Journal of Applied Mechanics 69, 853-854.

Forrestal, M.J., Altman, D.S., Cargile, J.D., Hanchak, S.J., 1994. An empirical equation for penetration depth of ogive-nose
projectiles into concrete targets. International Journal of Impact Engineering 15 (4), 395-405.

Forrestal, M.J., Frew, D.J., Hanchak, S.J., Brar, N.S., 1996. Penetration of grout and concrete targets with ogive-nose steel projectiles.
International Journal of Impact Engineering 18 (5), 465-476.

Frew, D.J., Hanchak, S.J., Green, M.L., Forrestal, M.J., 1998. Penetration of concrete targets with ogive-nose steel rods. International
Journal of Impact Engineering 21 (6), 489-497.

Frew, D.J., Forrestal, M.J., Hanchak, S.J., 2000. Penetration experiments with limestone targets and ogive-nose steel projectiles.
Transactions of ASME 67, 841-845.

Jones, S.J., Rule, W.K., 2000. On the optimal nose geometry for a rigid penetrator, including the effects of pressure-dependent friction.
International Journal of Impact Engineering 24, 403-415.

Jones, S.J., Rule, W.K., Jerome, D.M., Klug, R.T., 1998. On the optimal nose geometry for a rigid penetrator. Computational
Mechanics 22, 413-417.

Korn, G.A., Korn, T.M., 1968. Mathematical Handbook for Scientists and Engineers. McGraw-Hill Book Company, New York.

Kusher, V., 1967. Penetration with optimal work. Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, USA, BRL-
R-1384 (AD 664138).

Li, Q.M., Chen, X.W., 2003. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable
projectile. International Journal of Impact Engineering 28, 93-116.

Miele, A. (Ed.), 1965. Theory of Optimum Aerodynamic Shapes. Academic Press, New York.

Nixdorff, K., 1987. On the efficiency of different head shapes to perforate thin targets. Transactions of CSME 11, 109-112.

Ostapenko, N.A., Yakunina, G.E., 1992. Least-drag bodies moving in media subject to locality hypothesis. Fluid Dynamics 27, 71-80.

Ostapenko, N.A., Yakunina, G.E., 1999. The shape of slender three-dimensional bodies with maximum depth of penetration into
dense media. Journal of Applied Mathematics and Mechanics 63, 953-967.

Ostapenko, N.A., Romanchenko, V.L., Yakunina, G.E., 1994. Optimum forms of three-dimensional bodies for penetration of dense
media. Journal of Applied Mechanics and Technical Physics 4, 515-521.

Qian, L., Yang, Y., Liu, T., 2000. A semi-analytical model for tuncated-ogive-nose projectiles penetration into semi-infinite concrete
targets. International Journal of Impact Engineering 24, 947-955.

Vedernikov, Y.A., Shchepanovsly, V.A., 1995. Optimization of Reagasdynamic Systems. Nauka, Novosibirsk.

Yakunina, G.E., 2000. The construction of three-dimensional shapes within the framework of a model of lical interaction. Journal of
Applied Mathematics and Mechanics 64, 289-298.

Yakunina, G.E., 2001. On body shapes providing maximum penetration depth in dense media. Doklady Physics 46, 140-143.

Yankilevsky, D.Z., 1983. The optimal shape of an earth penetrating projectile. International Journal of Solids and Structures 19,
25-31.



	Shape optimization of impactor penetrating into concrete or limestone targets
	Introduction
	Description of the model and formulation of the problem
	Optimum nose geometry
	A property of the criterion functional
	``Absolute optimum'' nose geometry
	Optimum truncated-conic nose
	Optimum truncated-ogive nose
	Optimum spherical-conic nose
	Comparison of different nose shapes

	Concluding remarks
	References


